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ABSTRACT

LASA subarray amplitude anomalies are investigated using 395 medium-
sized events, distributed in ten azimuthally divided sectors. Although LASA
magnitudes, when averaged over all ézimuths, are only slightly biased relative
to NEIS magnitudes, the amount of bias varies with azimuth and subarray, sug-
gesting that a simple station correction for m, bias is not adequate. In
addition, fluctuations among LASA subarrays are about 0.15 in standard devia-
tion, even when these magnitudes are calibrated in sectors. Details of such
fluctuations are explained in part by local crustal and upper-mantle hetero-
geneities under LASA. The amplitude anomalies are linearly related to the
amount of travel-time anomalies iu each sector, implying that both effects are

due to crustal focussing.

Using a fixed effects model, the authors attempt to separate the cause
of L bias into sector (azimuth) effect, subarray effect, and subarray-sector
interaction. However, even this detailed modeling could not, with confidence,
explain m, bias. Using the reciprocity principle, even with a well calibrated
station, a factor of two in uncertainty results for predictions of a station's
amplitude for an event only 50 km away from a calibration event in a region as
complex as LASA. The event magnitude uncertainty would probably be reduced by
network averaging, or by a non-statistical detailed crust and mantle structure

which could be analyzed by ray-tracing to remove source and receiver effects.
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INTRODUCTION

Earthquake P-wave amplitudes received at various stations show a range of
fluctuations. Even when transformed into a logarithmic scale, earthquake mag-
nitudes for one event are commonly observed to have standard deviations of
more than one-half log unit. Commonly understood causes for magnitude fluctu~
ations include: (1) radiation pattern of the seismic source, (2) regional
effect of upper-mantle absorption, (3) local crustal structure under the sta-
tion, and (4) imprecise distance~correction terms for some stations. The
effect of radiation pattern is minimized when the seismic event is a single
explosion source. Yet, a study of the LONGSHOT explosion (Lambert et al.,
1969) showed that P-wave amplitude scatter of this explosion had a standard
deviation of 0.44 m .

Regional variation of body wave magnitude in the United States is well
established. In a recent paper Evernden (1977) gave a concise summary of past
studies concerning station magnitude bias, stating that magnitude biases can
be correlated with various factors such as travel-time anomalies, crustal
thickness under the station, low~velocity channel in the upper mantle, high
heat flow, and upper-mantle velocity structure. More specifically, Der (1976)
showed that P-wave amplitudes of stations in the Eastern United States (EUS)
are generally larger than those from stations in the Western United States
(WUS) by a factor of 3. Also, he indicated that most of the P-wave amplitude
bias can be attributed to regional upper-mantle absorption related to the

existence of a low-velocity channel.

Amplitude fluctuations of 3 to 1 are fairly common when observations of

an event's P waves are confined to a small area. LASA subarray amplitudes, for

Der, Z. A., 1976. On the existence, magnitude and causes of broad regional
variations in body-wave amplitudes. SDAC-TR-76-8, Teledyne Geotech,
Alexandria, Virginia 22314,

Evernden, J. F., 1977. Regional bias in magnitude versus yield measurement:
Its explanation and modes of evaluation. Submitted for publication.

Lambert, D. G., D. H. von Seggern, S. S. Alexander, and G. A. Galat, 1969.
The LONGSHOT experiment, Vol. 1l: Basic observations and measurements,
SDL Report No. 234, Teledyne Geotech, Alexandria, Virginia 22314.
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example, have long been known to register fluctuations of 4 to 1 for most
earthquakes. Fluctuations of 10 to 1 were also fairly common even after the
LASA reconfiguration in January 1974 to a 50 km diameter. In a small instru-
ment layout, such as LASA, the effects of radiation pattern, regional absorp-
tion, and distance correction term are nearly identical among all subarrays.
Therefore, amplitude fluctuations at LASA subarrays are strongly affected by
the local crustal and upper mantle structure. Note that these fluctuations
are largely randow and, therefore, not similar to the significant regional
biases that Booth et al. (1975), Der (1976), and North (1977) developed.
These authors smoothed over the random fluctuations and established the

regional effects with statistical confidence.

Previous studies of LASA subarray amplitudes confirmed that local het-
erogeneities strongly influence the P-wave amplitudes. Chiburis and Harten-
berger (1966) showed that for a typical event, signal amplitudes within a
subarray vary by a factor of 3 to 4, and that signal amplitudes within the
entire array also vary by & factor of 3 to 4. Klappenberger (1967a) studied
the behavior of LASA signal amglitude variations showing that amplitudes of
individual sensors and subarrays (phased sums) vary with an approximately log-
normal distribution. However, his study of spatial correlation of amplitude
anomalies (1967b) failed to show a fixed covariance among events. Such a

result is expected if the underlying geology is not laterally uniform. Indeed,

Booth, D. C., P. D. Marshall, and J. B. Young, 1975. Long and short period
amplitudes from earthquakes in the range 0° - 114°, Geophys. J. R. Astr.
Soc., 39, 523-538.

North, R. G., 1977. Station magntiude bias - its determination, causes, and
effects. Lincoln Laboratory, Technical Note 1977-24, Lexington, MA.

Chiburis, E. F., and R. A. Hartenberger, 1966. LASA signal and noise ampli-
tudes for three teleseismic events, SDL Report No. 151, Teledyne Geotech,
Alexandria, Virginia 22314.

Klappenberger, F. A., 1967a. Distribution of short period P-wave amplitude

over LASA, SDL Reprot No. 187, Teledyne Geotech, Alexandria, Virginia, .
22314, -
Klappenberger, F. A., 1967b. Spatial correlation of amplitude anomalies. .

SDL Report No. 195, Teledyne Geotech, Alexandria, Virginia 22314. -




Greenfield and Sheppard (1969) and Iyer (1971) have all presented interpreta-
tions of travel-time anomaly data showing that the crust under LASA is thinner
toward the S30°E direction with a step-like structure just under the subarray
A0. However, in another recent study (Aki et al., 1976), three-dimensional
modeling was used. Results of this modeling suggested that such changes in
crustal thickness are likely to be overestimated because the velocity struc-
ture of layers deduced from such modeling indicates that both the crust and
the lower lithosphere appear to share the same anomaly pattern as the proposed

Moho topography.

Whether or not crustal thickness changes abruptly, underlying crustal
and upper-mantle structure both strongly influence travel-time and amplitude
anomalies. The shallow structures cause local variations in travel time and
amplitude observed at nearby stations, and factors lying in the deeper litho-

sphere may cause a regional effect.

This report, using LASA subarray data, examines whether seismic receiver
amplitude anomalies and magnitude bias can be explained by regional and local
effects. The study is divided into three parts. First, subarray beam ampli-
tudes and array beam amplitudes are compared and systematic errors due to the
array's operational method of magnitude estimation are evaluated. Second,
subarray mb's are compared with the NEIS m, to evaluate azimuthal variatioms
of Amb in terms of regional and local effects. Third, a statistical model is
used to describe LASA Amb as a means of evaluating the significance of local
and regional effects stemming from crustal and upper-mantle structure and to

evaluate the precision of m recorded at a single site.

Greenfield, R, J., and R. M. Sheppard, 1969. The Moho depth variations under
LASA and their effects of dT/dA measurements, Bull. Seism. Soc. Am.,
59, 409-420.

Iyer, H. M., 1971. Variation of apparent velocity of teleseismic P-waves
across the Large-Aperture Seismic Array, Montana, J. Geophys. Res., 76,
(35), 8554-8567.

Aki, K., A. Christofferson, and E. S. Husebye, 1976. Three dimensional seismic
structure of the lithosphere under Montana LASA, Bull. Seism. Soc. Am.,
66, 501-524.




DATA

Events for this study were selected from the LASA 1974 event summary by
collating with the NEIS bulletin. The year 1974 was selected to ensure rele-
vance of the study to present systems because in late 1973 LASA was recon-
figured to a smaller size. Only those events which collated with the NEIS
bulletin in the m, magnitude range of 5.0 to 5.5 were used. This m, range
limitation restricted LASA-recorded amplitudes of the selected events to
between 10 and 100 millimicrons. Since LASA instruments are fixed to satu-
rate (clip) at 350 millimicrons, this upper and lower limit forced event
select~d from the medium magnitude range, thus avoiding noise contamination
of low-amplitude signals and non-linear instrument response of high-amplitude
signals. During the analyses, some events were eliminated because of cata
problems or because the signal was mixed with the coda of another event, etc.,

yielding a final total of 395 events in this study.

These events were then grouped into 10 sectors based upon back azimuths
of the events. The azimuthal range of each sector was adjusted so that the
sectors were easily characterized in geophysical terms. Thus, the number of
events in each sector ranges from 6 to 151. Table I lists the azimuthal
range of each sector and the approximate seismic regions each sector covers.

These data are also shown in Figure 1.

For each event selected, maximum peak-to-peak amplitudes and periods of
the P arrival within 3 seconds of the onset on the unfiltered array beam and
subarray beams from the A, B, C, and D rings were measured from waveform
records in the Seismic Data Analysis Center (SDAC) event library. Chiburis
and Hartenberger (1966) showed that subarray beams resulted in about 2 db of
signal degradation. However, noise reduction in subarray beams is approxi-

mately 6 db with respect to individual sensors.

Magnitude biases are computed by subtracting NEIS m from calculated LASA
m . NEIS reported magnitudes are rounded, not truncated, to the nearest 0.1
magnitude unit. There is some question that "'small' NEIS m, can represent
the "true'" magnitude because of the small number of stations (say, less than
10) reporting amplitudes for the event. However, magnitudes of moderately

large events, such as those in this study's data base, are generally close to

(ahos
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Sector

TABLE I.

Division of Data Base Into 10 Sectors

Azimuthal Range General Areas

350.1 - 25.0 Alma Ata to Caspian Sea

25.1 - 65.0 Turkey, Greece, Spain

65.1 - 110.0 North and South Atlantic Ridge

110.1 - 130.0 Puerto Rico

130.1 - 160.0 South of Mexico to South of Chile

160.1 - 210.0 Mexico, Easter Islands

210.1 - 250.0 Tuamotu, Samoa, Fiji

250.1 - 290.0C New Hebrides to Solomons

290.1 - 325.0 Aleutians, Kurils, Japan,
Marianas

325.1 - 350.0 Tibet, India




10 350° 7 1\ .

Figure 1. A world map centered at LASA to the distance of 100°, showing }
the division of 10 sectors in this investigation. Open circles |
are the locations of selected events.




true magnitudes because many stations (say, more than 10) report to NEIS and,
the result of averaging many stations is to closely approximate '"true'" magni-
tudes (Husebye et al., 1974). Since a number of events are used and averaged
in each sector, the effect of the NEIS bias is further reduced. The fact that
some NEIS regional bias may remain is unimportant to most conclusions of this

study. Exceptions to this statement are taken up as they arise.

Improper use of distance correction and use of different distance cor-
rection tables may introduce still more errors. Body wave magnitudes are com-
puted by the formula m = log(A<C/T) + B(A,h), where A is the maximum peak-to-
peak amplitude, C is the instrument correction factor, and T is the period of
the signal. The B(A,h) factor is a distance magnitude correction factor.
There are two types of B-factors available: Veith and Clawson's P-factors
(1972), and Gutenberg and Richter's values known as B-(or Q-) factors for
zero to peak amplitudes (converted to peak to peak by Cannon, 1967). In LASA
operation all magnitudes are computed with Veith and Clawson's P-factors
(1972). The difference between P-tables and Gutenberg and Richter's B-tables
are as much as 0.2 magnitude unit for surface focus and they can be even
greater for deeper events. In addition, two more computational errors are
involved in original LASA m, computations. The first is due to the original
LASA event location which, on the average, is in error by about 1.5 degrees.
Still, this error would result in only a small change in the distance-cor-
rection valuss. The second error is a result of LASA's failure to estimate
proper depth, so a wrong correction term was used in the m, computation. To
avoid these errors, array and subarray mb have been recomputed from the auth-
ors's own amplitude (peak-to-peak) and period measurements with the NEIS epi-
center and depth and with Gutenberg~Richter B-tables, as in NEIS magnitude

computations.

Husebye, E. S., A. Dahle, and K. A. Berteussen, 1974. Bias analysis of
NORSAR- and ISC- reported seismic event m, magnitudes. J. Geophys. Res.,
79,(20), 2967-2978.

Veith, K. F. and G. E. Clawson, 1972. Magnitude from short-period data, Bull.
Seism. Soc. Am., 62, 435-452.

Cannon, H. J., 1967. HYPOl, Technical Report 56, 106, Teledyne Geotech,
Garland, Texas.
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LASA MAGNITUDE FLUCTUATION STATISTICS ;

Systematic Magnitude Bias Errors ]

Calculating array magnitude requires first forming the array beam (phased
sum), and then calculating magnitude from it. As Husebye et al. (1974) dis-
cussed, this procedure results in three types of biasing errors. The first
error results from signal losses associated with array beamforming, caused by

improper travel-time corrections, signal waveform difference among subarrays,

and increased noise interference on subarrays compared to the full beam.

Although beamforming loss, dA1oss

beam amplitude from the average subarray amplitude, it does not comprise the

» 1s the estimate of the reduction of array

P magnitude bias, because magnitudes are computed with amplitudes and periods.
The second measure of error, dmloss’ is, therefore, the measure of deviations

E of the array beam A/T from the average subarray A/T. The third type of non-
random error, dm is the difference between log(average A/T) and average®

skew?’
log(A/T).

Because this study focuses on measurement of magnitude bias at LASA, all -

bias computations are taken with the following formula:

LASA NEIS

by = By 179 (1)

Sab e

for i-th subarray, j-th sector, k-th event. Using this forrula, LASA m, is
greater than NEIS m, if Amb is positive, and negative if vice-versa. Simi-
and dm are positive when array amplitudes (magnitudes) are

dA1oss loss
higher than subarray averages. Therefore, the sign of these measurements

larly,

are the reverse of Husebye et al.s' (1974). Finally, the total non-random

m bias, dmbias’ is the sum of dmloss T
The following formulas express the relation of non-random errors measured

at LASA:

and dm measured in each sector.

dmbias i dmloss * dmskew (2)

dA

N
E - (3)

=1 A, - lo e
loss = °8 % BAN




N
1
dmloss log AB cB - log ﬁ-ifl ai ° ci
Ty T, (4)

d = log

A
2=

mskew

N ; N E LN
g B% M .= 7 dog 1T 54
i=1 T, i=1 T, (&)

where AB is the maximum zero-to-peak amplitude of the LASA array beam, and a,

is the maximum zero-to-peak amplitude of the i-th subarray for that event.
g and ci are instrument response correction factors, and TB and Ti are periods
of array beam (B) and subarray beam (i) signals. By combining (4) and (5),

the total dmbias in (2) can be simplified as,

log (21 " Si (6)
1

s c 1
Man T <L—T l) TN, e
B i

"~

T

which could have been directly written. Errors with these formulas are com-
puted for each independent event and averaged over the events in each sector;

Table 11 shows the results.

Unlike Husebye et al.'s (1974) evaluation of NORSAR, where each region
s © > dAloss
sectors, This means that AB is slightly higher than the average of a

showed dAlos for LASA shows six gains and four losses in the ten

i the

distribution of ay is perhaps slightly skewed, and that the loss of LASA array

beamforming is very small. Similarly, was such that array magnitudes

dm
loss
were biased higher than the subarray average. Since dmskew is all positive,
the total magnitude bias is all positive, except in sector 2. Averaging all
sectors the LASA magnitude bias is 0.038 m units, a figure demonstrating

that systematic error at LASA is quite small.

Standard Deviations of dmbias and Subarray m

The magnitude biases given in Table II are computed by adding two system-
atic losses, dmloss and dmskew, with formulas (4) and (5). Alternatively,
dmbias and deviations of dmbias can both be calculated at the same time using

formula (6). Thus, simplify formula (6) with the following notations:

. L




LASA array beam losses and magnitude

for each sector calculated with equations 3, 4, 5, and 6.

TABLE II

biases

Sector Azimuth 'No. of Beam Loss Magnitude Bias

Fangs SUeHEE dA1o.qs dmloss skew dmbias

1 350.1-25.0 35 0.089 -0.019 0.022 0.003
2 25.1-65.0 22 -0.082 -0.048 0.032 -0.016
3 65.1-110.0 16 0.153 0.038 0.034 0.072
4 110.1-130.0 6 -0.091 -0.006 0.020 0.014
5 130.1-160.0 97 -0.015 0.020 0.032 0.052
6 160.1-210.0 20 0.124 0.078 0.023 0.101
7 210.1-250.0 24 0.059 0.044 0.012 0.056
8 250.1-290.0 17 0.069 0.035 0.013 0.048
9 290.1-325.0 151 -0.072 -0.015 0.028 0.013
10 325.1-350.0 7 0.075 -0.011 0.047 0.036
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dm = magnitude bias
= magnitude
= the array beam

a subscript for the sector

* & w 8
]

= a subscript for the event
. = a subscript for the averaged value over subarrays
Each independent event is associated with a value of dmbias' Thus, by aver-

aging over the entire K events in sector J, the average dmbias and error is

obtained, that is dejk = dej 4 ijk o

The term dej is the mean magnitude bias for the j-th sector, and it is equi-

shown in Table II; its standard deviation o measures

valent to dmb. Bj.

ias
the width of the distributions.

Similarly, evaluating how subarray mb's fluctuate from the mean can be

done using the same subscript notation, let

Besk ~ Togk T Gk (8)

where m is the magnitude for the i-th subarray, j-th sector, and k-th

ijk

event; and m is the average magnitude of all subarrays. For a particular

Jk
jk-th event, subarray magnitude fluctuates from the mean with a standard
deviation of o |, Averaging over the entire k events in the j-th sector

Jk.
yields
ST %y, T )

The term ¢ ., 1is the mean standard deviation of the subarray magnitude fluctu-

ations in the j-th sector, and o(c , ) represents the standard deviation of

]
the term e jk shown in (9). Results of these computations using (7) and (9)

are shown in Table III.

Magnitude biases in the first column of Table III are almost the same
as those in the last column of Table II. Although LASA m, bias in column 1

are small (-0.031 m, over all events-) standard deviations are in the range

b

=]F=




TABLE TIII

Measurements of magnitude bias, and measurements

of subarray magnitude fluctuations

Sector Magnitude Bias Subarray mb Fluctuations
amg5. %Bj. T gt e
1 0.003 0.134 0.144 0.035
2 -0.017 0.185 0.177 0.030
3 0.072 0.115 0.166 0.057
4 0.014 0.048 0.133 0.029
5 0.051 0.092 0.160 0.055
6 0.101 0.109 0.134 0.046
7 0.055 0.125 0.106 0.016
8 0.047 0.063 0.108 0.016
9 0.013 0.151 0.157 0.027
10 0.036 0.119 0.213 0.026




of 0.1 m, which means that even if LASA mb biases are calibrated in each

sector with dej , the accuracy of the estimates is limited by the value of

ij. in column 2.

T

Measurements of subarray magnitude fluctuations, o.j., are in the range
of 0.11 to 0.21 m s with average 0.15 m . Also, the standard deviation
o(o.j.) is very small in each sector, making subarray m, fluctuations consist-
ently in the range of 0.15 m . The range of subarray fluctuations -- from
smallest to largest subarray would include 14 of the 16 subarrays or =~ 90%
of the samples. The extreme samples would lie at ® *1.640, so if o = 0.15
then the extreme subarrays for each event would be expected to be 0.49 mag-

nitude units apart about a factor of 3.
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GEOPHYSICAL CAUSES OF MAGNITUDE BIAS

Subarray m, Biases Compared to NEIS m

For events selected in a sector, the magnitude bias Amb is computed using
(1) and then averaged over the number of events in the sector. The result
includes magnitude biases for each subarray and sector, as well as associated
standard deviations. These values are shown in Table IV. The last column
of Table IV shows the average of Amb over all sectors for each subarray, ZE;.

Magnitude biases may, of course, be due in part to NEIS regional bias.

The standard deviations of m biases shown in this table are generally
in the range of 0.30 to 0.35. Standard deviations of all subarrays are lower
in sectors 4 and 10. However, this result is suspect because only six or
seven events, respectively, were analyzed in each sector. With the exception
of these two sectors, the standard deviations are stable for all subarrays and
sectors. Thus, while subarray magnitudes can be azimuthally calibrated, the
best possible improvement are magnitude estimates with standard deviations of
0.3. This table also shows that the standard deviations of the full array
(row labeled LASA) are in the same range as the subarrays, indicating that any
signal estimate, array or subarray, can be azimuthally calibrated to behave
like a single station while the standard deviations remain the same. If the
NEIS regional bias varied from event to event, this would contribute to the
variance. However since 5.0 < my < 5.5 the bias would not be expected to vary
much because the same suite of station would be expected to detect all events.
Earthquake radiation pattern variations are presumably responsible for much of
this variance. (Recall that the o of subarray m relative to the mean LASA

beam m is 0.15.)

Uniform Azimuthal Variations of Subarray Magnitude Biases -- a Regional Effect

Evernden (1977) suggested that P-wave amplitudes received at stations in
a broad region can be calibrated with a regional correction. This observa-
tion suggests that one correction value, such as Zﬁ; in Table IV, applies to
events from all directions. Although the array Amb is small and near the
value of 0.1 in this table, azimuthal variations are much greater in all sub-
arrays, suggesting that a simple correction is not adequate for any particu- .

lar subarray. Figure 2 shows the plot of Amb against azimuth for all sub-
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arrays, indicating that azimuthal variations of magnitude bias are acting
uniformly over most subarrays, although some variations in each sector are

either greater or less than the average magnitude bias.

If factors causing m bias in subarrays may be separated into regional
and local structural changes, then the appearance of Amb variations acting
uniformly in Figure 2 would show regional variation and the plot of Amb with-
in each sector (Figure 3) would reflect local structural changes. Based upon
this assumption, the regional cause is deeper than the local cause and, there-
fore, the regional cause may be the P-wave velocity and Q variations of the
upper mantle (Evernden, 1977). Consider that LASA is located at the edge of
the Western United States structure and that Q might be higher in the north
and northeast of LASA and lower in the Southwest and West. Consequently,
events at LASA from sectors 1 and 2 might show slightly positive magnitude
bias and events in sectors 7 and 8 might show strongly negative bias as is
observed. This is, of course, only proof of consistency, and other causes

such as source regional NEIS bias, or source radiation pattern, are possible.

Contoured Patterns of Subarray Sector Magnitude Biases —— a Local Effect

Figure 3 shows contour maps of average magnitude bias by sector; the
arrow in the figure shows direction of the incoming signal. Although small,
these Amb contours show a close resemblance to similar contours made of tra-
vel-time anomalies (Iyer, 1971). The most conspicious pattern in the contour
maps of Amb is the N60°E trend, which is in good agreement with the contoured
travel-time anomalies presented by Aki et al., (1976), Iyer, (1971) and
Greenfield and Sheppard (1969).

Interpretations of the N60°E trend of travel-time anomaly data is some-
what uncertain. Greenfield and Sheppard, as well as Iyer, suggested this
trend indicated that the Moho boundary is sloping upward from under AO toward
the southeast. However, Aki et al. (1967) and Capon (1974) suggested that
perhaps such shallowing of the Moho is exaggerated. While we can offer no

conclusive evidence, our interpretation of contour lines in Figure 3 is

Capon, J., 1974. Characterization of crust and upper mantle structure under
LASA as a random medium, Bull. Seism. Soc. Am., 64, 235-266.
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Figure 3.

Contour maps of average bias in 10 divided sectors. The vari- :
ations in contour lines suggest the influence of variations in

local crust upper-mantle structure (located at the end of the

report as a foldout),




consistent with Greenfield's structure.

Figures 4a, 4b, and 4c, show NW-SE cross sections of LASA cutting from
D4 to D2. The depth of the Moho was taken from the crustal structure in
Figure 4 of Iyer's (1971) article. The 18° updip of the Moho boundary, begin-
ning at A0 and moving toward the SE is in agreement with the model that Green-
field and Sheppard (1969) proposed, except that in their paper the Moho appears
deeper than it was placed by Iyer. A simple velocity model of 6 km/sec for
the crust and 8 km/sec for the mantle is used in this study to compute the

incident wave refractions at the Moho boundary.

In Figure 4a, where seismic rays are emerging in pavallel with the trend
of the thinning crust under LASA, the rays are slightly convergent. The con-
vergence appears between B2 and A0, which agrees with the contour lines in
Figure 3 for Sectors 2 and 7. Note that this interpretation is based upon
a simple model that previous workers suggested. Contour-line features appear
to be simpler in the NW corner (on the flat crust side) and more complex

toward the SE (thinning crust side).

Figure 4b shows the case corresponding to events in Sector 5, with the
average angle of incidence of seismic waves of 25° (corresponds to events from
Chile~Boliva border area); waves will be divergent at the surface because
they will encounter the updip Moho structure. The divergent feature is rather
simple in this case, the effect of the varying crustal thickness appears on
the contour lines as the broadening of line spacing. This feature will begin
as a N60° trend lying between D4 and B4 and continue toward the SE. Contour

lines in Sectors 4 and 5 agree well with this explanation.

Figure 4c shows waves emerging from the NW corresponding to Sector 10
contour lines. An emergence angle of 16° was used which corresponded to events
from the Tashkent area. The upgoing rays are convergent at the surface near
B2. The waveforms are complex because converging rays and contour lines are
narrowly spaced with a N60ZE trend. Such features agree well with Sector 10

contour lines in Figure 3.
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In addition to the NE-SW trend of these contour lines Figure 3 also shows

some local, small-scale magnitude highs and lows. These small features may

be the shadow of local heterogeneities such as small "bumps" in the Moho boun-
dary or small local low Q zones. As the azimuth of emerging waves changes
from one sector to another, these features show corresponding responses on the
surface. Judging from the relative movements of these small feature against
the NE-SW trend, small irregularities are likely to be located either directly

above or below the Moho boundary.

To investigate the relation between amplitude and travel-time anomalies,
some values of travel-time anomalies, At, were chosen from Chiburis' and
Ahner's (1973) work. Selection was made based upon the location of events
shown in Figure 1; then one location was chosen per sector where most events
occurred in that sector. Although selecting one representative location in
a sector was difficult, the choices may be adequate for first-order estimates
of amplitude and travel-time anomaly relations. After determining a repre-
sentative location, travel-time anomalies of that location where taken from
the Chiburis-Ahner travel-time correction table. This method was simpler
than the more precise method of relating travel-time corrections of each

subarray, sector, and event, Atijk’ with Amijk'

Figure 5 shows the plot of Amb against At for each sector, where Amb's
are values shown in Table IV, and At's are Chiburis-Ahner correction values.
Although some wide scattering exists, perhaps a result of selecting only one
location per sector, amplitude and travel-time anomalies are linearly and ‘
clearly related; that is, positive Amb is related to positive At. Note that i
this is opposite to the relation discussed in Evernden's (1977) article,
where he suggested that high attenuation (negative Amb) and positive (late) |
At correlated in the case of broad regional m, anomalies. The linear rela-
tion in Figure 5 suggests that the LASA subarray effects, which are inter-

preted to be shallower than the regional effect, are generally consistent

Chiburis, E. F., and R. O. Ahner, 1973. LASA regional travel-time corrections
and associated modes, SDAC-TR-73-6, Teledyne Geotech, Alexandria, Virginia,
22314,
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with ray theory. For example, if a small body of high velocity, shaped as

as a lens, exists in the upper mantle, then seismic rays through this lens will
be divergent and the ray arrives earlier (megative At) than normal to the
receiver above the lens and is associated with smaller (divergent) amplitude.
Conversely, for low-velocity lens seismic rays will be convergent and ray

arrives later (positive At) with positive Amb.

Because the low Q zone is deep, a negative Amb effect will be uniform
for all subarrays. The net result is a shift of the coordinate origin down-
ward (Since At are relative to AO there is no effect on At.) In this context
Figure 5 (and Figure 2) shows that Sectors 6, 7, and 8 are associated with
coordinate shifts, and inspection of other sectors demonstrates that while
Sector 1, 2, and 5 have positive coordinate shifts, Sectors 3 and 4 need no
origin shift. This overall situation is consistent with the theory that a
low Q zone exists in the WUS and that LASA is situated just at the edge of
this zone, so that events in Sectors 1 and 2 seem to show the effect of waves
s travelling through Canadian-shield type mantle and events from the SW, W and
NW (Sectors 6, 7, and 8) show the effects of waves travelling through the high

] attenuation zone of the WUS mantle.

In summary, a comparison of LASA and NEIS magnitudes suggests that all
station magnitude biases should be calibrated azimuthally rather than with
a single-value bias term. The data also shows that magnitude biases are
affected by regional upper-mantle attenuations, as well as by local irregular
structures located within the upper 100 km of the earth's crust, and that
linear positive relation of amplitude and travel-time anomalies suggests that
focussing due to local crustal irregularities is probably the main cause of
; magnitude anomalies within the array. Finally, it was revealed that a stan-
dard deviation of 0.3 m with respect to NEIS, exists even after providing
a good local and azimuthal correction; this is presumably due to earthquake
radiation patterns and other source effects which "focus" a varying propor-

tion of energy toward LASA.
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FORMAL ANALYSIS OF VARIANCE FOR LASA MAGNITUDES

Thus far, simple models have been used to make inferences from LASA ampli-
tudes or magnitudes concerning the bias of LASA relative to NEIS, the nature
of the differences between the array beam and subarray beams, and structural
effects causing scatter. A relatively large standard deviation, 0.15 m,
existed for magnitudes recorded over the 13 LASA subarrays studied. In this
section, to describe this scatter and to estimate expected amplitude variation
among nearby receivers, a more complex model will now be fit to this LASA
data. The results can be applied to predictions of magnitude variation at a

single station using closely-spaced sources.

Fixed Effects Model for LASA Magnitudes
Assume the following model to describe the LASA magnitude data:

??iA- mﬁgEIS =u + ai + Yij + Bj + ij + eijk 9)
or
bt G e R e G (10)
where
m??iA = magnitude measured at the i-th subarray for the k-th event
in sector j,
m?iIS = magnitude reported by NEIS for the k-th event in sector j,
U = mean LASA magnitude bias relative to NEIS magnitude for all
events,
a; = i-th subarray effect,
Bj = j-th sector (azimuth) effect,
Yij = interactions between i-th subarray and j-th sector,
ij = k-th event effect within sector j,
eijk = a random, normally-distributed noise term with zero mean and

2
variance oe.

This is a fixed-effect model with interactions; a detailed presentation

of the model can be found in Scheffe (1959). Note that § terms are not

jk
interactions, but rather nested effects within each j-th sector.

Scheffe, H., 1959. The Analysis of Variance. New York, John Wiley and Sons,
Inc.
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Although equalizing the number of events from each sector was not necessary

to arrive at an analytical solution for the various terms, we used only events
’ in the data base recorded properly at all subarrays for each sector. To

, reduce the computations, the number of events in a sector was kept under fifty.
This restriction resulted in no significant loss of precision in the estimated
terms, and most sectors had initially fewer than fifty events (Appendix A).

For each j-th sector, then, the k index runs from 1 to a variable k To

j.
arrive at independent solutions for the terms, these essential side conditions

were imposed:

where the dot notation means averaging over the index it replaces. With

these conditions, the least-square estimates are obtained as

u % y'-.

§1 2l T L PO
ABj b S ol IR
LT Bt Wl "W B
Sk T " 2y,

-

The estimates for u and the a,'s, Bj's, and A,.'s are listed in Table V.

i ij
Based upon initial estimates of the above parameters in the model, the eijk
tem ~ ~ -~ -~ -~ -~
Rage " T S S Ry Ul o

was used to identify large measurement errors in the data base. Although

each observation with |eijkl > 0.3 was rechecked, only a few readings were
found in error, and these were eliminated or changed before computing final

estimates of the model parameters.

According to Scheffe's (1959) work, an analysis—of-variance framework
can be constructed for the particular model shown in Table VI. Tests for

significance of the various terms in the model are in the form

SS_/DF
X X
8s /(N = J(I-1) - N

% Fa,DFx,No-J(I—l)-Nq
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where x stands for a, B, 8§, or y and DFx for the degrees of freedom associated
with parameter x. Nq and No are the number of earthquakes and observations,
respectively, thus, No = Nq x 13 subarrays. The F-statistic test was exceeded
for each of the terms at the a = .99 level of confidence, making that model
appropriate for LASA magnitudes. Contrasts among main effects a, for the sub-

i

arrays can be tested, an exercise showing that the o, values for proximate

subarrays may be closer in value, but not significanily different, than for
those of more distant subarrays. Using Scheffe's T-method of comparison, con-
trasts among the subarray effects in the D, C, and even B rings were estab-
lished to be, at a high confidence level, non-zero in most cases, even though
the range in the ai's is small. Even greater confidence exists for contrasts

3

among sector effects B, because of their larger range.

Event effects §,, were not listed in Table V, but they were generally

jk 3
large, ranging from nearly -1 to +1 magnitude unit. Assuming that NEIS mag- 1
nitudes are unbiased estimates, interpretations of event effects ij rust, in

terms of source radiation pattern and geophysical anomalies, be peculiar to the

exact source-LASA path. Although subdividing the 10 sectors into more numer-

ous event regions would reduce the scatter of these terms within a sector,

this refinement was unwarranted because of an increase in degrees of freedom.

The p term at LASA has an overall -0.09 magnitude bias for seismic events
within 100° around the globe, a figure in good agreement with this study's
earlier analysis. The ay term represents the mean bias of subarray magnitudes
relative to u. Their small range implies that a gross station effect (or cor-
rection term) will vary only slightly over the dimension of LASA, roughly 50
km, and that station effects are not the cause of the large magnitude scatter
at LASA. The larger Bj effects are azimuthally-dependent gross correction
terms due to the structure in the crust and upper mantle under LASA. However,
a portion of these effects can be attributed to consistent source or path
bias relative to LASA for events within the delineated sectors. For example,
Sector 7 is dominated by earthquakes in the Fiji-Tonga-Kermadec region, where

the fault-plane strikes have fairly consistent azimuths relative to LASA.

The interactions Yij in Table V are random and have a range of nearly

0.5 m, unit. These terms are closely related to the effects on signal wave &

Y-




forms from the laterally inhomogenous structure beneath LASA and they absorb
much of the scatter represented by the high values resulting when equation

(8) was applied.

The noise term in our model, e is statistically represented by its

’
estimated variance, computed as .Olijtsing the form in Table V; thus o =
0.104. Assuming a normal distribution for the noise term implies that for
5% of the observations the error exceeds an absolute value of 0.21 m unit.
Thus, even a detailed model does not adequately represent observed magnitude
at a LASA subarray, if a confidence factor of two in the predicted value is
required. Further, this result ignores the large and capricious values of

the Gj 's, which are mostly unpredictable and add as much as *1.0 to the

k
uncertainty in absolute source magnitude.

Nature of Station Magnitude Corrections

Several investigators have already obtained seismic station magnitude
corrections independent of azimuth (Cleary, 1967; Carpenter et al., 1967;
Evernden and Clark, 1970; Booth et al., 1975; North, 1977). The results pre-
sented here for LASA provide some gauge of the utility of such corrections
when applied to any given event. Consider each LASA subarray as a distinct
station with a correction given by

Eij =l+a ;13 + Ej_ 12)
This definition includes the sector effect and its interaction with each sub-

array and it is a more precise station correction than a gross single-dimen-

sion station term. Although subdividing the sectors into small source regions,

Cleary, J., 1976. Analysis of the amplitude of short-period P-waves recorded
by Long Range Seismic Measurements stations in the distance range 30 to
102 degrees, J. Geophys. Res., 72, 4705-4712,

Carpenter, E. W., P. D. Marshall, and A. Douglas, 1967. The amplitude-dis-
tance curve for short-period teleseismic P-waves, Geophys. J. R. Astr.
Soc., 13, 61-70.

Evernden, J. F., and D. M. Clark, 1970. Study of teleseismic P. II-Amplitude
data, Phys. E. Planet. Int., 4, 24-34,
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as Berteussen and Husebye (1974) did with NORSAR amplitude, can achieve fur-
ther precision, the present limited data base will not allow such refinement
for most sectors. Recall that the main effects a, and Bj’ and their inter-
actions, were found, at very high confidence levels, to be significantly dif-
ferent from zero. Thus, plots of Cij in Figure 6 for all the subarrays can
be presented as meaningful data. 1In each case, connected sector points have
a positive or negative residual relative to the NEIS reference set represented
by the dashed circle, with radius equal to one magnitude unit, and an angle
equivalent to the center azimuth of each sector. In this figure important
phenomena represented include the large azimuthal variations at any given sub-
array and the imperfect correlation of patterns among the subarrays that span
an area roughly 50 km in diameter. Evidently, "station correction" is a

highly variable quantity.

If from equation (9) a prediction of event magnitude from a single obser-

vation is given by

SREYS. . . PASK. % B ~ -
ms s Uy = LT e . T e Bj’ (13)

then the difference between prediction and actual observation is

-~

NEIS NEIS. 2
T %1) ~ ij + eijk (14)

Mik Mk

Note that 6j cannot be known a priori and, therefore, cannot be used to cor-

k
rect station magnitudes before a mean event magnitude is estimated from many

stations. From this analysis of LASA magnitudes, ij has a range of roughly
two magnitude units and, eijk’ with a standard deviation of approximately 0.1,

13° which Figure 6 shows has a spread of

less than one magnitude unit, accounts for no more than one-half the observed

is negligible in comparison. Thus, C

magnitude difference between a LASA subarray prediction and the NEIS mag-
nitude. This result implies that, although using azimuthally-varying correct-
ions can produce significant gains in precision of a stations's magnitude
estimation, a significant portion of unpredictable error will still exist

unless more detailed or regionalized corrections are developed.

Berteussen, K. A., and E. S. Husebye, 1974. Amplitude pattern effects on
NORSAR P-wave detectability, NORSAR Scientific Report No. 1-74/75,
Kjeller, NORWAY.
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Figure 6.

Azimuthal variations of LASA subarray magnitude corrections.
ed circle in each subarray represents zero mp correction. Inside

Dash-

the circle smaller subarray is represented; thus, positive correc-
tions should be applied, and vice-versa for points outside.




Precision of a Single Site in Estimating Source Magnitude

Although predicting seismic magnitude at one site from a nearby site is
of some interest, the pattern of LASA magnitudes can also be used to investi-
gate the more practical need to predict the magnitude (or its uncertainty) at
a single site when the source position is‘varied. This situation arises in
any "calibration" context where information gained from one seismic event is
used to correct the observations of one nearby. In such cases, both accuracy
of the calibration and the level of confidence of the predictions are impor-

tant.

If seismic reciprocity is invoked (Knopoff and Gangi, 1959), analyzed
LASA magnitude data is useful in approximating anticipated amplitude variations
either at a single receiver site, when the source is moved over an area roughly 1
the extent of the LASA array, or on the order of five to ten wave-lengths for )

signals in the routine LASA detection passband of 0.9-1.4 Hz. Let m and

ijk
ijk be two subarray magnitudes, consistent with the definition of equation 1
(9). At any subarray, these magnitudes over the event set have no easily

-

m

formulated statistical distribution. However, if we consider the normalized

form

LASA NEIS & £ Sl S £
= -6 - B. - =lg k. el
Mijk ~ Mik B By TR T T Sk (15)

by this equation, the left-hand side can be approximated by a variable with
a normal distribution having mean oy and a variance given by the randomness

+ e over all events. We now adopt the simplified notation of

Vi3 ijk

-

LASA _ NEIS _ %

% * 2 1
me SHik T Tyn J T By~ ¥ (16)

for a subarray's normalized magnitude and then express the conditional distri-

bution of m”*, for a suite of events, as

: (m.. - ¢ )2
f(m,.|m,) = exp i’ ii”
v » i 17)
A% Gg ¥ L Pgge 2l=p, 5.3 5.
ii i
Knopoff, L., and A. F. Gangi, 1959. Seismic Reciprocity Geophysics, 24 (4) "
681-691. .
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where the mean ¢11 is given by

- g,
¢ii‘ s piia _1 (mi _— ai) + a
g, .
i
Equation (17) is the relation appropriate to jointly-distributed, normal, cor-

T (18)

related variables. To determine Pyj~» We compute the covariance of m, and

4
m, .
e | 1 LASA _NEIS 4 2 5 ?
T K, . L R WL
@ASA _ NEIS _ 5o )
i‘jk jk jk j 14.. (19)
and the variance of m, as
2 1 1 LASA NEIS . a wa >
e \ E;'i By =B — Sy "Bt m, ) (20)
and similarly for 01,2. The squared correlation coefficient is defined as
2.2
g o S )
i - it i SN
@y By. (21)

Aki (1973) has already shown that Pii- is dependent upon the subarray spacing
at LASA for spectral amplitudes near 1 Hz, a finding consistent with Chernov's
(1960) theory. Figure 7 shows the pii‘ computed for the 13 subarrays ot this
study. The trend is toward lesser correlation with increasing separation,
which is similar to Aki's results because magnitudes measured in this study
were associated with periods predominantly near one second. The oi/i-piiz,
values are also plotted which are the standard deviation of the conditional
distribution of magnitude at one subarray, given that at another. These
values are in part reflections of results displayed in Figure 6 on the ampli-

tude patterns of the LASA subarrays,

How the principle of seismic reciprocity between sources and receivers
(Knopoff and Gangi, 1359) is related to equality of amplitude variances is
discussed in Appendix B. If reciprocity holds, then the correlations and
uncertainties expressed in Figure 7 can be converted into appropriate uncer-
tainties for an array of sources rather than receivers. For a pair of iden-

tical sources within ten km of each other, roughly the smallest inter-subarray

=39=~
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Figure 7. Estimates of signal amplitude correlations, variances, and differ-
ences versus receiver separation using LASA subarrays. By seismic
reciprocity, this is an estimate of variations to be expected at a
single site due to similar changes in source position.
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distance at LASA (between AO and B ring), correlation of the amplitudes

received at a single fixed site should be near 0.5. Corresponding to this
correlation the standard deviation of the measured magnitude for the second
source minus that of the first source should be near 0.10. For maximum
separation of sources corresponding to the LASA D-ring spacing, the correla-
tion falls to around zero, and the standard deviation of the measured magni-
tude of the second source, relative to that of the first one, would be near
0.15. Note that the variation in the ay is not considered here because it
incorporates the specific peculiarity of the LASA structure and it cannot be
projected into a statistical consideration of source regions. Its values
(see Table V) were small at LASA and including it would add no more than 0.1
to the uncertainty for the largest separations and much less for the smallest

separations considered.

These results imply that magnitude calibration for sources has a very
limited range, probably less than is commonly thought satisfactory for a cal-
ibration of travel-time residuals, except in dipping-plate source regions.

If LASA structure is similar to the crust and upper mantle in earthquake
source regions, in terms of expected variations in magnitude, then a magnitude
calibration for a given source-receiver pair cannot be expected to remain
within 0.3 m unit with better than 957 confidence when a new source occurs
just 50 km from the calibration source. Clearly, an advantage exists in
multiple receivers because the improvement through network calibration should

behave as the square root of the number of receivers.

The question of whether the conditions for seismic reciprocity are valid
for the LASA array of receivers is not studied in this report. If, as Bala-
chandran (1974) suggests for a smaller-scale experiment, the LASA seismometers
are within a few wavelengths of the inhomogeneities that give rise to the am—-
plitude and phase fluctuations found in this and numerous other studies, then
reciprocity may not hold. The scatter of amplitudes, enhanced by secondary
wave fields, over the LASA array may give too large an estimate of the scatter

to be expected in the reciprocal case of an array of sources.

Balachandran, K., 1974. Noninterchangeability of sources and receivers in a
heterogeneous medium, Geophysics, 39, 73-80.
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BEHAVIOR OF LASA AMPLITUDES AS A FUNCTION
OF SENSOR AND SOURCE SEPARATION
This section focusses on variations in receiver amplitudes as a function
of increasing source separation. The discussion clarifies nearly all the
important results of this report that pertain to statistical fluctuations of
LASA amplitudes.

Consider the log amplitudes aj at two subarrays i and i” for events k
and k“, with k indexing over all events and not just those in a particular

sector. Then the quantity

measures the imprecision of the calibration of the subarray differences from
one event to another. As already discussed, this quantity should be an increas-
ing function of subarray separation and of event separation. Here we compute

the standard deviation of Aa versus increases in both these separations thus,

Z ™

i L 2
[aik a;.) I a;m)]

N-1 e

0[Aa(';l,dy)]=

where the summations is made over all subarray-event combinations falling
within given incremental values of subarray separation I;, and central angle

separation dy. The dy is calculated as
dy = arccos (Xka, + kak' + Zka,)

where
Xk = sin ik . COS Ok
Yk = sin ik . sin Ok
Zk = cos ik

and similarly for event k”. The angles i, and Ok are the incidence angle and

back azimuth of the signal arriving at LA:A from event k. So dy is a measure
of the central angle between the two rays that impinge on an imaginary hemi- =
sphere surrounding LASA. The epicentral distance and depth of the events,

listed in Appendix I, are converted to an incidence angle by linear inter- S

polation of the tables in Pho and Behe (1972).
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When computing standard deviations according to equation (22), subarray
separations were pooled in 10 km steps and dy pooled into bins of < 1°, < 2°,
< 4°, etc. The truncated data base defined in the previous section was used
as a means to avoid biasing the results with large concentrations of data
from a few highly seismic areas. The epicenters were further limited to A >
30° from LASA because the i vs. A relation is highly dependent upon crustal-
upper mantle structure at short distances. Also, epicenters with A < 90°
were discarded because highly variable fluctuations were associated with even
close epicenters because of core diffraction and plate effects on many of the
events in this range from LASA (see Figure 1), With the 167 remaining events,
o(Aa)'s shown in Figure 8 were computed. Each point represen s no fewer than
N=500 combinations summed in equation (22). The pattern here is relatively
smooth, increasing from roughly o = .10 for small (;l and small dy (in gen-
eral agreement with results in previous sections) to nearly o = .40 for the
largest values of both. Therefore, results, shown in Figure 8 suggest that
magnitude calibration is not precise for neighboring events and that it
becomes almost meaningless for events distant from one another. Note that a
given dy maps into values of inter-event distance which are dependent upon the
relation of the event locations to the great-circle path back to the receiver.
For example at A = 90°, a 1° difference in dy translates to a 1° (~ 110 km)
difference in epicenters perpendicular to the path but to roughly a 10°
(~ 1100 km) difference in epicenters parallel to the path. Thus, magnitude
calibration could be applicable to much larger source location changes if
they are along the raypath direction rather than normal to it. However, cal-

culations needed to precisely verify this principle were not performed.

Results similar to those for LASA in Figure 8 have been obtained for
NORSAR using the data in Berteussen and Husebye (1974), but they are not

presented here.

Pho, T.~T., and L. Behe, 1972. Extended distances and angles of incidence
of P-waves, Bull. Seism. Soc. Am., 62, 885-902.
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CONCLUSION

LASA magnitude bias relative to NEIS, when averaged in all directions
for the whole array, as well as individual subarrays, is near =0.1 m . How-
ever, when viewed in azimuthal sectors, LASA m, biases reveal large coherent
variations, indicating that generally accepted, single-value, station bias
terms cannot reduce bias to negligible proportions for single stations mag-
nitude observations, even if they are determined to be statistically signi-
ficant with a large data base. Subarray azimuthal biases show uniform vari-
ation among subarrays, suggesting that the effect of regional bias, possibly
related to upper-mantle attenuation, indeed exists at LASA. Interpretations
of regional bias suggests that LASA is located at the edge of the anomalous
Western United States structure. However, local crustal and upper-mantle
heterogeneity apparently has an even greater effect than regional structure
on the m bias of each subarray. The result is that local m biases also
reveal characteristic features of crustal and upper-mantle structure and

they show some linear correlation with values of travel-time residuals.

From the linear regression analysis standard deviations of subarray mag-
nitudes were found to be at the 0.15 m, level within each sector. Using the
fixed effects model, these equivalent values are represented in the sector-
subarray interaction term Yij’ which also showed a similar range of fluctua-
tions. Further, the event effect term ij gives as much as much as 1.0 m
uncertainty in source magnitude. Subarray effects were small when averaged
over all events, and so they are not the cause of the large LASA magnitude

scatter.

Within the context of station calibration, the confidence level of pre-
dicting the m at a station for an event from calibrations based on another
event occurring in a nearby source area was examined. Assuming seismic reci-
procity results showed that the correlation of a single receiver's magnitudes
for repeated observations of two events occurring only 50 km apart from each
other would be near zero. This result implies that magnitude calibration for
sources is very limited in space, probably to an area much less than that
believed to hold for the calibration of travel-time anomalies. Uncertainty

is a factor of two (0.3 mb), at the 957 confidence level, in predicted
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amplitude at a station for a source moved only 50 km from the calibration

source in a geologic area of complexity similar to LASA's. For sources

several tens of degrees apart the magnitude uncertainty at the 95% confidence
level is +0.8 m for stations 50 km apart in regions similar to LASA. To the
extent that the crustal effects discussed in this report may be regarded as

"random" in a network of stations, they may be miminized by network averaging.
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. APPENDIX A

List of events and event parameters used
in this study, grouped in sectors LOl to L1O.
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APPENDIX B
{ Signal Variance Among Sources and Receivers as a
Consequence of the Seismic Reciprocity Theorem
I}




From Knopoff and Gangi (1959), the seismic reciprocity theorem for linear
elasticity is

' u (B,Q) £,(P) = u,(Q,P) £,@

where ui(P,Q) is the i component of displacement at receiver point P due to

source at Q of strength fj(Q) in the direction j. The theorem is valid in

inhomogeneous, non-isotropic media with arbitrary boundaries.

In this form the theorem is not suited for applications to problems of
magnitude-yield because an explosion source is not a directed force, but rather
a dilatation expanding against hydrostatic pressure. The relevant generali-
zation is (Knopoff, 1978 personal com&unication)

Veu(P,Q) t(P) = V.u(Q,P) 1(Q)

Verbally, this equation can be expressed as: a unit dilatation at Q work-
ing against hydrostatic pressure 1(Q) produces a divergence at P that when
multiplied by t(P) is equal to the divergence produced at Q by a unit dila-
tation at P multiplied by 1(Q).

-

Again, this theorem is valid in inhomogenous, non-isotropic media with

] arbitrary boundaries.

Explosions of equal yield at equal depth should satisfy the condition of
equal dilatations at equal pressures, Thus in applying this to the present
study, if the divergence (of a signal from Semipalatinsk) could be measured
at a shot depth at subarrays of LASA; the variance of the divergence measure-
ments would be equal to the variance observed in the divergence measured at
shot depth near the shot at Semipalatinsk from a series of explosions set off

at the subarrays of LASA.

The only problem here is that in practice we measure displacements at the
surface, not divergence at shot depth. However, to the extent that the incom-
ing wave at both LASA and Semipalatinsk can be modelled as a plane wave the
divergence may be simply calculated as the vertical derivative of the incoming

$ wave amplitude with a delayed signal of the same polarity (the reflection

from the surface). If focussing and de-focussing are the main causes of signal

) amplitude variation, then the maximum divergence at depth will be a constant




factor times the maximum displacement at the surface. Thus, the variance of k.

the divergence in logarithmic units will be the same as the variance of the
displacement. Thus, finally, the variance of the displacement at Semipalatinsk
from shots spaced around LASA will be equal to the variance observed at the

shotpoints from a shot at Semipalatinsk.

In this report variance measurements have been made at LASA on the signals
from earthquakes, not explosions. Thus, while the theorem is not totally
valid, we can see that our conclusions about variance are still valid. Consider
that the P-wave signal, as it emerges from the earthquake, could have come from
an explosion of suitably determined yield. In logarithmic units this factor
would cancel out of variance estimates so that we could predict the variance
to be observed at the earthquake foci from shots spaced around LASA. Since

the crust above the earthquake, between the earthquake and a surface sensor, is

a complex part of the path, the variance observed at the surface would then be
greater than, or equal to, the variance observed at LASA from the earthquakes.
This conclusion applies only so long as the radiation patterns of the earth- i
quakes do not vary significantly across LASA.
]
] Note also that the variance observed at RKON due to shots spaced around
the Nevada Test Site (NTS) is equal to the variance that would be observed at
NTS from a shot at RKON. Or, another example, the variance observed at NTS
from a shot at Semipalatinsk is equal to the variance which would be observed
at Semipalatinsk from shots spaced around NTS. Clearly, there are many appli-
cations of this theorem.
@
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